Perminov Y.A.

Title of the article About the Relevance and Methodology Aspects of Teaching the Mathematical Modeling to Pedagogical Students
Authors Perminov Y.A.
In the section METHODOLOGY PROBLEMS
Year 2014 Issue №2 Pages 17
Type of article   Index UDK 378.016:51+371.13 Index BBK  
Abstract

The paper substantiates the need for profile training in mathematical modeling for pedagogical students, caused by the total penetration of mathematics into different sciences, including the humanities; fast development of the information communications technologies; and growing importance of mathematical modeling, combining the informal scientific and formal mathematical languages with the unique opportunities of computer programming.

The author singles out the reasons for mastering and using the mathematical apparatus by teaches in every discipline. Indeed, among all the modern mathematical methods and ideas, mathematical modeling retains its priority in all professional spheres. 

Therefore, the discipline of “Mathematical Modeling” can play an important role in integrating different components of specialists training in various profiles. By mastering the basics of mathematical modeling, students acquire skills of methodological thinking; learn the principles of analysis, synthesis, generalization of ideas and methods in different disciplines and scientific spheres; and achieve general culture competences. In conclusion, the author recommends incorporating the “Methods of Profile Training in Mathematical Modeling” into the pedagogical magistracy curricula.

Download abstract.pdf
Index terms future teachers, methodology, training, discipline, ma­thematical modeling.
References

1. Glass D., Stenli D. Statistical methods in pedagogy and psychology. Moscow: Progress, 1976, 495 р. (Translation from English)

2. Glass R. Facts and delusions of professional programming: transl. from English. St-Petersburg: Simvol-Plus, 2007. 240 p. (Translation from English)

3. Krasovskii N. N. Mathematical modeling in school. Izvestija UrGU. [News of the Ural State University]. 1995. № 4. Р. 12–24. (In Russian)

4. Kudryavtsev L. D. Sovremennaja matematika i ee prepodavanie. [Modern mathematics and its teaching]. Moscow: Nauka, 1985. 176 p. (In Russian)

5. Matematicheskaja jenciklopedija / pod redakciej I. M. Vi­no­gra­dova. [Mathematical encyclopedia. Under edition I. М. Vinogradov]. Moscow: Soviet encyclopedia, 1979. Vol. 2. 1104 р. (In Russian)

6. Mitin N. A. New models of mathematical psychology and information processes. Mode of access: http://spkurdyumov.narod.ru/ Mitin12.htm (In Russian)

7. Mordkovich A. G. New concept of school course of algebra. Matematika v shkole. [Mathematics at school]. 1996. № 6. Р. 28–33. (In Russian)

8. Neujmin Ja. G. Modeli v nauke i tehnike. [Models in science and technology]. Moscow: Nauka, 1984. 189 p. (In Russian)

9. Perminov E. A. Metodicheskie osnovy obuchenija diskretnoj matematike v sisteme «shkola – vuz». [Methodological bases of teaching discrete mathematics in system «secondary school – higher school»]. Yekaterinburg: RSVPU, 2006. 237 p. (In Russian)

10. Perminov E. A. Methodological principles of mathematical training of teachers of vocational training. Obrazovanie i nauka. [Education and science]. 2013. № 5. Р. 36–53. (In Russian)

11. Perminov E. A. Rabochaja programma discipliny «Matematicheskoe modelirovanie v psihologii» dlja studentov vseh form obuchenija napravlenija podgotovki 030300 Psihologija, magisterskoj programmy profilja 030300.68 «Organizacionnaja psihologija». [Working program of the discipline «Mathematical simulation in psychology» for students]. Yekaterinburg: RSVPU, 2012. 11 p. (In Russian)

12. Working training program of the discipline «Mathematical modeling and numerical methods» / sostaviteli V. Ju. Bodrjakov, V. D. Zhavoronkov. Ekaterinburg: Urals state pedagogical university, 2011. 16 р. (In Russian)

13. Sarantsev G. I. Methodological thinking: a view from the past and present. Materialy Vserossijskoj nauchnoj konferencii «Metodicheskaja podgotovka studentov matematicheskih special’nostej pedvuza v uslovijah fun-damentalizacii obrazovanija». Ch I. Saransk: Mordovskij gosudarstvennyj pedagogicheskij institut. [Materials of all-Russian scientific conference «Methodical preparation of students of mathematical disciplines of the pedagogical University in the conditions of fundamentalization of education». Vol. I. Saransk: Моrdоv. state ped. inst]. 2009. P. 3–7. (In Russian)

14. Turbina I. C. Ispol’zovanie diskretnyh i nepreryvnyh matematicheskih modelej dlja profil’noj differenciacii obuchenija matematike v sisteme srednego professional’nogo obrazovanija. Kand. diss. [Use of discrete and continuous mathematical models for profile differentiation of teaching mathematics in the system of secondary professional education. Cand.diss]. Moscow: Moscow state pedagogical university, 2013. 23 p. (In Russian)

15. Federal state standard of higher education in the direction of preparation 030300 Psychology. Qualification the master. Access mode: http://www.edu.ru/db/portal/spe/archiv_new.htm. (In Russian)

16. Federal state standard of the higher vocational training in a direction of preparation 051000 Vocational training (on branches). Qualification the master. Access mode: http://www.edu.ru/db/portal/spe/archiv_new.htm. (In Russian)

17. Shadrikov V. D. Mental’noe razvitie cheloveka. [Mental development of person]. Moscow: Aspect Press, 2007. 327 p. (In Rus­sian)

 

You are reporting a typo in the following text:
Simply click the "Send typo report" button to complete the report. You can also include a comment.