Title of the article | Theoretical Basics of Teaching Discrete Mathematics | ||||
Authors | Perminov Y. A. | ||||
In the section | VOCATIONAL EDUCATION | ||||
Year | 2012 | Issue | №3 | Pages | |
Type of article | Index UDK | Index BBK | |||
Abstract |
The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures) plays the important role in modernization of vocational training. It is especially relevant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineering and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in discrete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. |
||||
Download | file.pdf | ||||
Index terms: | teacher of vocational training, the discrete mathematics, theoretical bases of bachelors and masters’ training for vocational pedagogic qualifications. | ||||
References |
1. Glushkov V. M. Cybernetics. Theory and Practice: monogr. M.: Nauka, 1986. 888 s. 2. Klekovkin G. A., Perminov E. A. Diskretnaya Matematika: Kombinatornye configuration and number of kobinatornye: studies. book for students of pedagogical universities. Samara: SF MGPU, 2005. 112 s. 3. Klekovkin G. A., Perminov E. A. Diskretnaya Matematika : Recurrence relations and generating functions 11. Rekurrentnye sootnoshenija i proizvodjawie funkcii. 110 s. Samara: SF MGPU, 2005 4. Klekovkin G. A., Perminov E. A. Diskretnaya Matematika. III: graphs Grafy. 194 s. Samara: SF MGPU, 2005 5. Klekovkin G. A., Perminov E. A. Diskretnaya Matematika IV: Asymptotic estimates and approximations 50 s. Samara: SF MGPU, 2005 6. Klekovkin G. A., Perminov E. A. Problems in discrete mathematics. Combinatorial configurations and combinatorial number . Samara: SF MGPU, 2005. 50 s. 7. Kolmogorov A. N. // Matematika v shk. 1969. № 3. S. 12–18. 8. Konysheva L. K. Diskretnaya Matematika . Ekaterinburg: Izd vo RGPPU, 2010. 206 s. 9. Konysheva L. K., Meshkov V. V. Book of problems in discrete mathematics. Ekaterinburg: Izd vo RGPPU, 2010. 140 s. 10. Mathematical Encyclopaedia. / gl. red. I. M. Vinogradov. T. 2. M.: Sov. jencikl., 1979. 11. Perminov E. A. Methodological foundations of discrete mathematics teaching in the "school - university": monograph. Ekaterinburg: Izd vo RGPPU, 2006. 237 s. 12. Perminov E. A. // Obrazovanie i nauka. Izv. UrO RAO. Prilozhenie. 2006. № 2 (2). S. 37–40. 13. Testov V. A. The problem of updating the content of teaching mathematics at school. // Prepodavanie matematiki v shkolah i vuzah: problemy soderzhanija, tehnologii i metodiki: materialy Vseros. nauchno-prakt. konf. Glazov: Glazovskij gos. ped. in t, 2009. S. 106–111. 14. The federal government standard of higher education toward training 051 000 Vocational Training (by industry). Qualifications Bachelor.. 15. The federal government standard of higher education toward training 051 000 Vocational Training (by industry). Qualifications Master. 16. Fedorov V. A. // Obrazovanie i nauka. Izv. UrO RAO. 2008. № 9 (57). S. 127–134. |